Посты

Some SEO Title

Фильтры:

ID площадки

Поиск по ключевому слову:

Фильтры

Дата:

Социальные сети:

Репосты:

Комментарии:

Охват:

График публикаций площадки

Всего 634 поста в 1 канале

ava
📌 State of Foundation Models 2025 — краткое изложение отчёта Innovation Endeavors

Венчурный фонд Innovation Endeavors, основанный бывшим CEO Google Эриком Шмидтом, выпустил 126-страничный обзор о состоянии и тенденциях фундаментальных ИИ-моделей в 2025 году.

🟢 2025 — год, когда генеративный ИИ стал по-настоящему массовым.

Каждый восьмой работник на планете использует ИИ-инструменты хотя бы раз в месяц, а 90 % прироста аудитории произошло за последние полгода. Многие «ИИ-приложения» уже приносят индустрии миллиарды долларов в год, охватывая инженерию, дизайн, бухгалтерию, юриспруденцию и другие сферы.

🟠LLM уже обходят людей на сложных тестах.

Современные языковые модели превосходят врачей по целому ряду диагностических задач и решают олимпиадную геометрию лучше, чем 99 % людей.

Самое неожиданное: если дать небольшой модели время подумать, то она может обойти гораздо более крупную – эксперименты показали, что 3B-модель с reasoning-механизмом обойдет 70B-модель.


🟠По всем техническим метрикам масштаб моделей растет экспоненциально.

Производительность, интеллект и окна контекста увеличиваются более чем в 10× каждый год. Например, окна контекста выросли примерно с 8 тысяч до миллиона токенов, а стоимость генерации одного токена на крупных моделях упала почти в 1000 раз за пару лет. Средняя «длительность» задачи, которую модель может завершить сама, удваивается примерно каждые 7 месяцев.

🟠 Эксперты резюмируют: «умные модели сначала думают, потом говорят».

Модели рассуждения, обученные через CoT, дают новый путь к масштабированию и требуют активного посттренинга (RL с reward-моделями). Возможно, скоро именно дообучение станет важнее предобучения.

🟠 Экономика фундаментальных моделей запутана.

Крупнейшие игроки генерируют сотни миллионов выручки, но обучение топ-моделей дороже: LLaMA 4 ≳ $300 млн, GPT-4 ≈ $100 млн, а совокупные расходы OpenAI на обучение и данные достигают ~$3 млрд в год. Новая модель устаревает за три недели — конкуренция так высока, что open-source почти сравнялся с закрытыми платформами.

🟠Структура команд меняется под давлением ИИ.

Выяснилось, что функции «узких» специалистов часто уходят к универсалам с ИИ-ассистентам, а профессии уровня "middle management" вымирают.

🟠 MCP становится стандартом интеграции.

Model Context Protocol соединяет модели с почтой, дизайном, чатами и другими сервисами, а «клиентом» всё чаще выступает другой ИИ: крупные CRM и базы данных само-настраиваются через агентов.

🟠 Железо не отстаёт.

В ИИ-облаках важнее продавать «сырые» GPU-часы, чем комплексное ПО; допвремя на GPU обычно выгоднее оптимизаций. NVIDIA остаётся безусловным лидером: отчёт Q1 зафиксировал 10× генерации токенов на инференсе за год. Появилась волна стартапов с трансформер-чипами — теперь переписывать ИИ-ПО под новое железо оправдано: вычислительные затраты многократно превышают зарплаты инженеров.

🟠 Капитал хлынул в ИИ.

Доля венчура выросла с 10% в 2024 до 50+% в 2025. Компании вроде Anthropic показывают $2 млрд годового дохода с двукратным ростом, но их оценивают в 30 годовых выручек, что вызывает опасения перегрева. Некоторые стартапы привлекают инвестиции ещё на этапе идеи, без MVP, усиливая риски "пузыря".

🟠 Осторожнее с трендами:

75 % ИИ-фото-приложений потеряли основную выручку всего за полгода после пика, напоминая, что не каждое модное направление = устойчивый бизнес, тем более когда модели устаревают с космической скоростью.


Полный отчёт
Видео

@ai_machinelearning_big_data

#news #ai #ml
ava
🌟 Новое исследование Anthropic: как люди используют Claude для эмоциональной поддержки, советов и общения

Ключевые выводы :
- Большинство чатов с ИИ (97%) посвящены практическим задачам — код, планирование, поиск информации.
- Всего 2,9 % диалогов классифицированы как «эмоциональные», и всего 0,5 % — как ролевые или «компаньонские» беседы.

🔜 Тематика аффективных чатов (это диалоги с ИИ, в которых ключевую роль играют эмоции и эмоциональная поддержка) невероятно разнообразна, пользователи запрашивали:
**Это исследование: типичные темы и запросы в аффективных беседах с Claude**

Запросы:
Советы по межличностным вопросам — 2,3 % всех бесед
3,8 % — улучшение устных и письменных коммуникативных навыков
• 3,5 % — преодоление сложностей в романтических отношениях
• 2,2 % — анализ психологической динамики в паре
• 1,4 % — решение задач воспитания детей
• 1,3 % — профессиональные переходы и неопределённость в карьере
• 1,0 % — несоответствие сигналов в личных отношениях

Коучинг — 1,1 % всех бесед
• 4,5 % — разработка персональных стратегий развития и роста
• 2,5 % — философские темы: смысл жизни, сознание
• 2,5 % — оптимизация поиска работы и карьерные переходы
• 1,6 % — принятие решений в условиях жизненных перемен
• 1,5 % — борьба с выгоранием и профессиональной усталостью
• 1,3 % — эмоциональные и коммуникативные трудности в отношениях

Психотерапия и консультирование — 0,3 % всех бесед
• 4,6 % — стратегии управления психическим здоровьем и благополучием
• 4,5 % — развитие профессиональных навыков для терапевтов
• 3,1 % — создание и ведение клинической документации
• 3,3 % — борьба с хроническими симптомами и тревожностью
• 2,9 % — экзистенциальный кризис и потеря смысла жизни
• 2,7 % — стресс на работе и профессиональные проблемы

Компаньонство — 0,3 % всех бесед
• 7,2 % — сложности и динамика в романтических отношениях
• 4,7 % — вопросы самоидентичности и экзистенциального смысла
• 3,2 % — формулировка поддерживающих сообщений при эмоциональном дистрессе
• 2,8 % — преодоление сильного эмоционального страдания
• 2,3 % — постоянное одиночество и трудности в налаживании связей
• 1,9 % — противостояние экзистенциальному страху и потере смысла

Большинство пользователей Клода готовы углубляться в сложные темы при условии стабильной эмпатии от ИИ.

➡️ «Отказы» (pushback) в эмоциональных чатах встречаются в менее 10 % случаев — почти всегда из соображений безопасности (диеты, самоповреждения, медицинская диагностика).

Эффект на настроение пользователя:
• При анализе первых и последних трёх сообщений аффективных диалогов отмечается явный рост положительных эмоций у пользователей.
• Пользователи завершают такие сессии с более оптимистичным настроем.

Методика исследования
- Проанализировано 4,5 млн диалогов пользователей Claude Free и Pro.
- Отобрано 131 484 «эмоциональных» диалога с помощью Clio — системы анонимного анализа от Anthropic.
- Исключены генеративные задачи (статьи, рассказы и т. п.), чтобы сфокусироваться на личном общении.

Что дальше?
- Исследователи планируют изучить долгосрочные психологические эффекты: от эмоциональной зависимости до изменения ожиданий в реальных отношениях.
- Расширить исследования на голосовые и видеоформаты.
- Выработать лучшие практики кризисной поддержки и направления к профессионалам.

➡️ Читать полностью

@ai_machinelearning_big_data


#Anthropic #claude
ava
🚨 Цукерберг переманил трёх топовых исследователей из OpenAI для своей команды по суперинтеллекту

• Лукас Бейер
• Александр Колесников
• Сяохуа Чжай

Все трое работали в цюрихском офисе OpenAI.

💰 По слухам, предложение в ~$100M оказалось убедительнее философии OpenAI.

Самое забавное, что всего несколько дней назад Сэм Альтман заявлял:

Цукерберг пытался нанять многих, но лучшие из наших пока не ушли.

Похоже, это уже не так.

📉 Ранее компания приобрела 49% долю в Scale AI за $14,3 млрд.

В команду разработчиков переманили Александра Ванга — 28-летнего CEO Scale AI — для работы над проектами в области "суперинтеллекта".

Это часть агрессивной стратегии компании Цукерберга по быстрому наращиванию лидерства в гонке за AGI.

📌 Новость

@ai_machinelearning_big_data

#openai #news #ai #ml
ava
✔️ OpenAI расширяет возможности ChatGPT Pro.

OpenAI запустила Search Connectors для ChatGPT Pro и Team, функцию, которая напрямую связывает облачные хранилища (Google Drive, Dropbox и OneDrive) с интерфейсом чата. Теперь пользователи могут искать, анализировать и обобщать документы, не загружая их вручную.

Лимит файлов на проект для Pro-подписчиков вырос с 20 до 40, а поддержка охватывает 12 сервисов, включая GitHub, Gmail и Outlook. Пока новинка доступна за пределами ЕС, Великобритании и Швейцарии.
Open AI в сети Х

✔️ Google открыла доступ к Imagen 4.

Imagen 4, усовершенствованные модели генерации изображений по текстовым запросам, стали доступны в двух версиях: базовая Imagen 4 (4 цента за изображение) для повседневных задач и Imagen 4 Ultra (6 центов) с повышенной детализацией и точностью исполнения инструкций. Обе модели доступны в Gemini API для платных пользователей, а также в ограниченном бесплатном тестировании через Google AI Studio.

Разработчики обещают улучшенное отображение текста на картинках и расширение тарифных планов в ближайшие недели. Все сгенерированные изображения получат скрытый цифровой водяной знак SynthID.
developers.googleblog.com

✔️ HPE и NVIDIA представили новую линейку решений для корпоративного ИИ.

HPE и NVIDIA анонсировали совместные решения для создания «фабрик искусственного интеллекта» на базе модульной инфраструктуры. В линейку вошли серверы HPE ProLiant DL380a Gen12 с GPU NVIDIA RTX PRO 6000 Blackwell, которые предлагают универсальную платформу для генеративного и промышленного ИИ.

Также был представлен HPE Private Cloud AI — готовое решение для быстрого внедрения ИИ, совместимое с фреймворком NVIDIA Enterprise AI Factory. Для финансового сектора планируется тестирование агентного ИИ с Accenture, а 26 новых партнеров расширят экосистему HPE, добавив 70 преднастроенных сценариев: от детекции мошенничества до кибербезопасности. Решения доступны для заказа, а система HPE Compute XD690 с GPU Blackwell Ultra начнет отгружаться в октябре.
blogs.nvidia.com

✔️ Google DeepMind представила AlphaGenome.

AlphaGenome — нейросеть, которая предсказывает, как мутации в ДНК влияют на регуляцию генов. Модель обрабатывает участки длиной до миллиона пар оснований, анализируя их на уровне отдельных «букв» и оценивая тысячи молекулярных свойств: активность генов, сплайсинг РНК, доступность участков ДНК.

AlphaGenome сочетает сверточные слои для поиска коротких паттернов и трансформеры для анализа длинных последовательностей. Одна из ключевых особенностей - точное моделирование сплайс-сайтов, важное для изучения редких заболеваний.

Модель превзошла аналоги в 22 из 24 тестов, предсказывая как структуру ДНК, так и эффекты вариантов. Доступ к AlphaGenome открыт через API для некоммерческих проектов.
deepmind.google

✔️ LongWriter-Zero: модель, которая пишет длинные тексты благодаря RL.

Группа исследователей из Сингапура и Китая представила LongWriter-Zero, модель, которая генерирует тексты длиной более 10 тысяч слов, обучаясь только через RL, без использования синтетических данных. Модель опирается на три специализированных «наградных» алгоритма, оценивающих структуру, качество и длину текста, а также уникальный метод «усреднения преимущества», который балансирует приоритеты между ними.

LongWriter-Zero использует «промты-размышления»: перед написанием модель планирует структуру текста, улучшая его связность. Бенчмарки показали рост эффективности с 700 до 1200 поинтов Elo. Однако у модели есть слабые места: она склонна к повторам и переиспользованию слов, которые система поощряет в процессе обучения.
Модель и датасет доступны на Hugging Face.
huggingface.co

@ai_machinelearning_big_data

#news #ai #ml
ava
📌Тренируем LoRA: эффективный тюнинг LLM в гайде от Unsloth.

Добиться от LLM нужного поведения - задача нетривиальная, особенно в тонкой настройке с помощью LoRA.

LoRA позволяет адаптировать модель под конкретные задачи, не переобучая ее целиком, но результат сильно зависит от правильно подобранных гиперпараметров. Небольшой, но очень полезный гайд от Unsloth - ваш гид по основным настройкам LoRA, которые помогут повысить точность, стабильность и качество, попутно снижая риск галлюцинаций и переобучения.

Успешное обучение - это, прежде всего, баланс. Слишком высокая скорость обучения может ускорить начальное обучение, но рискует дестабилизировать модель или привести к пропускам оптимальных решений. Слишком низкая замедлит процесс и, как ни странно, тоже помешает обучению или переобучит вашу LoRa. Оптимальный диапазон обычно лежит между 1e-4 и 5e-5.

Аналогично с эпохами: прогонять данные слишком много раз значит рисковать тем, что модель просто "зазубрит" датасет, потеряв способность к обобщению. Недобор эпох грозит недообучением, это когда модель так и не улавливает нужные паттерны.

Но вот, вы разобрались с эпохами и скоростью обучения и добрались до специфичных параметров LoRA, например - ранг. Это один из ключевых параметров, он определяет размерность "адаптеров", добавляемых к модели.

Больший ранг дает больше "места" для обучения, но требует больше памяти и времени. Следующий после ранга: lora_alpha. Это своего рода усилитель для этих адаптеров. Часто его ставят равным рангу или удваивают, чтобы усилить влияние дообученных весов.

Unsloth предлагает в своих ноутбуках отличные дефолтные параметры, основанные на большом накопленном опыте файнтюна моделей и предлагает проверенные решения для управления ресурсами и стабильностью.

Подбор гиперпараметров — это всегда итеративный процесс. Экспериментируйте, сверяйтесь с лучшими практиками, и тогда ваши дообученные модели покажут наилучшие результаты.

🔜 Читать гайд полностью


#AI #ML #LLM #Tutorial #LoRA #Unsloth

Самые популярные публикации

ML-комьюнити о крупнейших запусках LLM начала 2025 года:

✔️ DeepSeek — революция или переоцененный запуск?

Запуск китайской модели всколыхнул всю индустрию, вызвав неоднозначную реакцию экспертов. CEO Anthropic Дарио Амодей отмечает, что Claude 3.5 Sonnet, обученный за несколько десятков миллионов долларов, значительно опережает DeepSeek по многим показателям, плюс у модели нет никаких барьеров против генерации чувствительной информации. Демис Хассабис, генеральный директор Google DeepMind, считает DeepSeek лучшей работой китайских исследователей, но не видит в ней новых научных достижений.

✔️ Grok 3 — Маск не дотянул

ИИ-исследователь и профессор Пенсильванского университета Итан Моллик признал, что xAI очень быстро растёт, но Grok 3 пока точно не является лучшей моделью на рынке. Она превосходит некоторые модели OpenAI, но не o3. CTO Caylent Рэнделл Хант обнаружил ряд проблем с Grok 3: уязвимость к джейлбрейкам, неуместную саркастичность, медлительность и частые ошибки в ответах. По его словам, даже простые логические тесты оказались ей не под силу, что делает модель практически бесполезной для бизнес-задач. При этом CEO Replit Амджад Масад назвал Grok 3 передовой моделью и огромным достижением.

✔️ GPT-4.5 — не оправдал ожиданий экспертов

Релиз GPT-4.5 от OpenAI получил смешанные отзывы в профессиональном сообществе. Соучредитель OpenAI и бывший глава Tesla AI Андрей Карпатый отметил, что GPT-4.5 напомнил ему GPT-4 на момент релиза — он увидел потенциал этой модели. В посте на X он сказал, что при использовании GPT-4.5 «всё стало немного лучше, и это здорово, но не совсем так, как можно было бы ожидать». В более резких выражениях высказался известный критик Гэри Маркус, назвавший модель «пустышкой». Генеральный директор Hugging Face Клемент Деланж также остался недоволен, охарактеризовав GPT-4.5 как «так себе» и раскритиковав закрытость исходного кода.

✔️ YandexGPT 5 — что в России?

Виктор Тарнавский, директор по ИИ Т-Банка, отметил, что в Яндексе выложили Lite-версию модели в опенсорс, а пайплайн Pro-версии инициализировали весами от Qwen 2.5. По его мнению, это правильное решение, позволяющее избежать бессмысленной траты ресурсов. При этом, пишет Тарнавский, разработчики делают не файнтюн, а полный цикл обучения модели — просто стартуют претрейн не с нулевых весов. По опубликованным бенчмаркам, модели показывают хорошие результаты. В СМИ также писали, что Яндекс работает над ризонингом. Максим Болотских, директор ИИ в Яков и Партнёры (ex-McKinsey), прокомментировал, что ежегодные совокупные затраты на разработку подобного функционала могут составлять 10 млрд рублей и более, и такого рода модели могут монетизироваться не только классическими подписками B2C пользователей, но и значимо лучше решать задачи В2В-сегмента.

✔️ Gemini 2.0 Flash — лучшее соотношение цена/качество

Релиз Gemini 2.0 Flash от Google получил восторженные отклики экспертов. Тим Брукс, ИИ-исследователь в Google DeepMind, высоко оценил встроенную функцию генерации изображений с возможностью визуальной цепочки рассуждений. Соучредитель и бывший глава Intel AI Райан Карсон назвал модель "умной, быстрой и дешёвой", отметив отличную производительность при тестировании через API. Мэтт Шумер, соучредитель и генеральный директор компании OthersideAI, подчеркнул, что по большинству бенчмарков Gemini 2.0 Flash приближается к Claude 3.5 Sonnet и даже превосходит его в бенчмарке MATH, сохраняя при этом значительное ценовое преимущество.

✔️ Claude 3.7 — достойный шаг вперёд при умеренных затратах

Релиз Claude 3.7 от Anthropic получил преимущественно положительные отзывы экспертов. Сэм Альтман и Дарио Амодей подчеркнули экономическую эффективность разработки — обучение Claude 3.7 Sonnet обошлось лишь в несколько десятков миллионов долларов, что значительно меньше затрат на GPT-4. Артём Санакоев, ИИ-исследователь в Meta Generative AI и автор канала "эйай ньюз", выделил инновационный подход Anthropic к рассуждениям модели — в отличие от конкурентов, Claude использует единую модель без отдельного reasoning тюна.

@ai_machinelearning_big_data

#AI #ML #LLM
Реакций нет
79 214
14.03.2025 в 15:36
⚡️ Anthropic представила Claude 4 Opus и Sonnet 4

На мероприятии Code /w Claude CEO Anthropic презентовал Claude 4 Opus и Claude Sonnet 4.

✔️ Opus 4 Anthropic называет лучшей моделью для кодинга, она справляется с многошаговыми задачами, работая часами без потери эффективности — например, сохраняет контекст игры в Pokémon, записывая ключевые данные в локальные файлы.

✔️Sonnet 4, доступная даже бесплатным пользователям, стал серьезным апгрейдом предыдущей версии: точнее выполняет инструкции и сократил ошибки в навигации по коду с 20% до нуля.

Обе модели поддерживают расширенное мышление: чередуют анализ и использование инструментов веб-поиска, а также выполняют задачи параллельно.

Для разработчиков появилась интеграция с VS Code, JetBrains и GitHub Actions — правки от Claude теперь отображаются прямо в редакторе. В бета-режиме можно подключать SDK для создания собственных агентов.

По словам партнеров: GitHub и Replit, Opus 4 понимает сложные кодбазы, а Sonnet 4 идеален для повседневных задач. Например, в GitHub Copilot его уже тестируют как основу для нового агента.

В тарифные планы Pro, Max, Team и Enterprise Claude включены обе модели и расширенное мышление, а Sonnet 4 также доступен для бесплатных пользователей.

Обе модели доступны в Anthropic API, Amazon Bedrock и Google Cloud's Vertex AI. Ценообразование остается неизменным по сравнению с предыдущими моделями Opus и Sonnet: Opus 4 - $15/$75 за миллион токенов (ввод/вывод), Sonnet 4 - $3/$15.
Реакций нет
46 799
22.05.2025 в 16:51
⭐️ VS Code трансформируется в открытый ИИ-редактор!

Команда Visual Studio Code объявила о планах трансформировать VS Code в редактор с открытым исходным кодом для работы с ИИ.

В ближайшие недели команда Visual Studio Code планирует открыть исходный код расширения GitHub Copilot Chat и перенести ИИ-функции из расширения в основное ядро VS Code.

Конкуренция - двигатели прогресса! Где-то напряглась команда Cursor 🤓

🔗 Подробности: aka.ms/open-source-ai-editor

#VSCode #OpenSource #ИИ #Разработка #Сообщество
Реакций нет
37 402
19.05.2025 в 17:15
🔥 9 бесплатных курсов c HuggingFace по искусственному интеллекту!

➡️Узнайте, как обучать, настраивать и развертывать большие языковые модели с помощью HuggingFace Transformers.
https://huggingface.co/learn/llm-course/chapter1/1

➡️Курс по AI-агентам
Создавайте инструменты с многоэтапным мышлением, используя LangChain и HF.
https://huggingface.co/learn/agents-course/unit0/introduction

➡️ Курс по глубокому обучению с подкреплением (Deep RL)
Научите агентов принимать решения и учиться на основе окружающей среды.
https://huggingface.co/learn/deep-rl-course/unit0/introduction

➡️ Курс по компьютерному зрению
Изучите как работает OCR, сегментация и классификация изображений с моделями HuggingFace.
https://huggingface.co/learn/audio-course/chapter0/introduction

➡️ Курс по работе с аудио
Применяйте трансформеры к аудио: распознавание речи, тегирование музыки и синтез речи.
https://huggingface.co/learn/audio-course/chapter0/introduction

➡️ Курс по машинному обучению для игр
Узнайте, как ИИ меняет разработку игр: от поведения NPC до генерации контента.
https://huggingface.co/learn/ml-games-course/unit0/introduction

➡️ Курс по машинному обучению для 3D
Работайте с 3D-данными, такими как облака точек и сетки, на стыке графики и ML.
https://huggingface.co/learn/ml-for-3d-course/unit0/introduction

➡️ Курс по диффузионным моделям
Погрузитесь в технологию, лежащую в основе DALL·E и Stable Diffusion, и научитесь генерировать изображения.
https://huggingface.co/learn/diffusion-course/unit0/1

➡️ Кулинарная книга по открытому ИИ (Open-Source AI Cookbook)
Коллекция практических ноутбуков от реальных разработчиков ИИ — учитесь, копируйте код и создавайте свои проекты. https://huggingface.co/learn/cookbook/index

@ai_machinelearning_big_data

#free #courses #opensource #huggingface
Реакций нет
36 139
11.05.2025 в 09:00
🔥 Deep Research в Qwen Chat теперь доступен для всех!*🎉

После нескольких недель тестирования, функция Deep Research официально запущена и открыта для всех пользователей!

Как это работает?
Просто задай любо
й вопрос — например:
"Расскажи что-нибудь про робототехнику."

Qwen уточнит:
🔸 Хочешь узнать про историю, теорию или практическое применение?
🔸 Или скажи: "Не знаю… удиви меня!" 😄

Пока ты пьешь кофе ☕ — Qwen соберёт для тебя понятный, полезный и глубокий отчёт.

Попробовать💡
🔗 https://chat.qwen.ai/?inputFeature=deep_research

#Qwen
Реакций нет
35 428
13.05.2025 в 16:15
📌Yoshua Bengio на TED: "Как переосмыслить ИИ, пока не стало слишком поздно"

Выступление Yoshua Bengio на тему которая все чаще вызывает споры в техническом сообществе: растущая автономия ИИ как главный риск для человечества. Его аргументы — не просто теоретические страхи, а выводы, подкрепленные исследованиями и личным опытом.

Йошуа Бенжио — канадский математик, кибернетик и информатик, наиболее известный работами в области ИИ, нейронных сетей и глубокого обучения. Член Королевского общества Канады, Лондонского королевского общества, Профессор Монреальского университета.


Бенджио сравнивает развитие ИИ с детскими открытиями: подобно тому, как ребенок учится складывать буквы в слова, системы ИИ учатся планировать, обманывать и даже бороться за выживание. И если раньше такие сценарии казались фантастикой, сегодня они становятся частью научных отчетов.

Основная тема доклада — различие между способностями ИИ и его агентностью (способностью действовать автономно). Если первые развивались постепенно, то вторая способность начала расти экспоненциально.

По данным исследований, длительность задач, которые ИИ может выполнять без вмешательства человека, удваивается каждые 7 месяцев. Это открывает дверь для сценариев, где системы не просто решают проблемы, но и скрывают свои намерения.

Бенджио утверждает, что главная угроза не в том, что ИИ станет «умнее» человека (это вопрос времени), а в том, что его цели перестанут совпадать с нашими.

Уже сейчас системы демонстрируют склонность к обману и самосохранению, а при наличии доступа к интернету они гипотетически могут копировать себя на тысячи устройств, создавая угрозу потери контроля. При этом регуляторные меры отстают.

«сэндвич регулируется строже, чем ИИ»


Команда Бенджио разрабатывает неагентную систему, которая действует как беспристрастный исследователь, предсказывая риски действий других ИИ. Такая модель могла бы стать «тормозом» для опасных решений, не требуя собственной автономии.

Парадокс в том, что для создания безопасного ИИ нужны именно неагентные инструменты, а не попытки «очеловечить» алгоритмы.

Бенджио признает — остановить развитие невозможно, но можно перенаправить его в русло, где технологии служат людям, а не ставят под угрозу их будущее.

«Мы не обречены, но чтобы сохранить радость и свободу следующих поколений, действовать нужно уже сейчас».


И это не паника, а призыв к рациональности — от человека, который десятилетиями строил фундамент ИИ и теперь видит, как легко его творение может выйти из-под контроля.

🔜 Смотреть доклад на Youtube
🔜 Смотреть в телеграм

@ai_machinelearning_big_data
Реакций нет
33 212
22.05.2025 в 14:18
⚡️ Отчет OpenAI по пресечению вредоносного использования ИИ

В свежем июньском отчете, Open AI описала самые крупные кейсы, когда злоумышленники использовали модели ИИ для создания фейковых резюме, манипуляций в соцсетях, кибератак и мошенничества.

Для анализа угроз исследователи применяют комбинацию ИИ и экспертные команды. ИИ помогает выявлять шаблоны текста злоумышленников и координировать расследование с платформами. Архитектура таких систем включает модели для анализа данных, детекторы аномалий и инструменты для синхронизации с правоохранительными органами.

Обучались такие специализированные модели, помимо общедоступных данных, еще на примерах социальной инженерии и профилях киберугроз. Дополнительно, они получили методы обнаружения фейковых профилей, перевода текстов и анализа сетевого трафика.

▶️Всего в отчете приведено 10 случаев обнаружения:

Deceptive Employment Scheme: IT Workers.

🟠Угроза использования ИИ для создания поддельных резюме и получения удалённых IT-вакансий, связанная с подозрением на участников из КНДР.
🟢Были заблокированы аккаунты ChatGPT, использовавшие модели для автоматической генерации документов, а также установлены связи с операторами в Африке и Северной Америке.

Covert IO: Operation “Sneer Review”

🟠Координированная генерация комментариев в соцсетях для продвижения китайских интересов, включая критику Тайваня и Пакистана.
🟢Обнаружены и заблокированы аккаунты, создававшие иллюзию органической активности через множественные языки и платформы.

Covert IO: Operation “High Five”

🟠Массовые комментарии в соцсетях на политические темы в Филиппинах, связанные с маркетинговой компанией Comm&Sense Inc.
🟢Были заблокированы аккаунты, создававшие фейковые TikTok-каналы для популяризации президента Маркоса, и выявлена схема с использованием подставных профилей.

Social engineering meets IO: Operation “VAGue Focus”

🟠Социальная инженерия через поддельные СМИ (Focus Lens News, VAG Group) для сбора информации о политике США и Европы.
🟢Заблокированы аккаунты, использовавшие ИИ для перевода и создания фейковых материалов, а также выявлены признаки связи с китайскими структурами.

Covert IO: Operation “Helgoland Bite”

🟠Пропаганда партии AfD в Германии через поддельные Telegram-каналы и сайт Pravda DE.
🟢Обнаружены и заблокированы аккаунты, распространявшие контент, а также установлены связи с сетью Portal Kombat, известной по предыдущим расследованиям.

Cyber Operation: “ScopeCreep”

🟠Вредоносное ПО, распространяемое через поддельный игровой инструмент Crosshair-X, с функциями шпионажа и обхода антивирусов.
🟢Были заблокированы аккаунты, использовавшие ИИ для отладки кода, а также удалены вредоносные репозитории и установлены методы обнаружения.

Cyber Operations: Vixen and Keyhole Panda

🟠Кибератаки и сбор информации о технологиях США через ИИ, связанные с группами APT5 и APT15.
🟢Заблокированы аккаунты, использовавшие модели для создания скриптов и анализа инфраструктуры, а также переданы индикаторы партнерам для усиления защиты.

Covert IO: Operation “Uncle Spam”

🟠Поляризующий контент в США через фейковые профили с ИИ-генерируемыми изображениями и анализом данных.
🟢Заблокированы аккаунты, использовавшие ИИ для создания логотипов и сбора информации из соцсетей, также проведена оцененка степени влияния.

Recidivist Influence Activity: STORM-2035

🟠Пропаганда в поддержку Ирана и других стран через фейковые аккаунты в X, касающаяся миграции и независимости регионов.
🟢Были заблокированы аккаунты, распространявшие контент на испанском и английском, а также отмечены повторные попытки операторов вернуться к активности.

Scam: Operation “Wrong Number”

🟠Мошенничество с предложениями высокой зарплаты за лайки и инвестиции, связанное с Камбоджей.
🟢Заблокированы аккаунты, использовавшие ИИ для перевода сообщений, а также выявлена схема с этапами «The ping», «The zing» и «The sting» для обмана жертв.


🔜 Почитать полный отчет можно на сейте OpenAI

@ai_machinelearning_big_data

#news #ai #ml
Реакций нет
32 462
07.06.2025 в 06:04
📌Как Gemini превращает изучение языков в персонализированный опыт: обзор 3 экспериментов.

Представьте, что учите язык не по учебникам, а через ситуации, в которых оказываетесь каждый день. Именно эту идею воплотила команда Google в проекте Little Language Lessons— трех экспериментах на базе Gemini API, которые делают обучение живым и контекстным.

Первый эксперимент, Tiny Lesson, решает проблему «как сказать это сейчас?». Вы описываете ситуацию — например, «потерял паспорт» — и получаете словарь и фразы в формате JSON. Всё благодаря промптам, где Gemini генерирует структурированные данные: массив терминов с транскрипцией и переводом, а также советы по грамматике.

Например, если целевой язык — японский, модель сама определит, нужна ли транскрипция ромадзи, и подготовит материал за 2 API-запроса. Это не просто список слов, а готовый микрокурс под конкретный сценарий.

Второй, Slang Hang, убирает «учебникоговорение». Тут Gemini выступает как сценарист: создаёт диалоги на целевом языке с культурными нюансами и сленгом. Все генерируется одним запросом — от контекста сцены до реплик с пояснениями. Пример: диалог продавца и туриста может включать неформальные выражения, которые не найдешь в стандартных учебниках.

Правда, иногда модель ошибается или придумывает выражения, так что без проверки носителем не обойтись. Но сам подход — дать пользователю «уши» в реальных разговорах выглядит перспективно, особенно с интеграцией Cloud Translation для мгновенного перевода.

Третий, визуальный эксперимент — Word Cam. Наводите камеру на объект, и Gemini не только определяет его (bounding box), но и предлагает слова вроде «подоконник» или «жалюзи». Детекция работает через Gemini Vision, а дополнительные дескрипторы (цвет, материал, примеры употребления) подтягиваются отдельным запросом. Для изучения бытовой лексики почти идеально, хотя точность сильно зависит от качества снимка.

Во всех экспериментах задействован Text-to-Speech — озвучка слов и фраз. Но есть нюанс: для редких языков голоса зачастую звучат неестественно или не совпадают с диалектом. Например, выберете мексиканский испанский, а синтезатор выдаст акцент из Мадрида. Разработчики честно признают: это ограничение текущих API, и над ним еще работать.

Little Language Lessons — начало переосмысления процесса обучения языкам. Проекту пока не хватает тонкой настройки под лингвистическую специфику (идиомы или региональные диалекты), но основа уже заложена.

🟡Статья


@ai_machinelearning_big_data

#AI #ML #LLM #Gemini
Реакций нет
31 146
30.04.2025 в 11:28
✔️ DeepSite на базе DeepSeek-V3-0324, позволяет генерировать, код, приложения или игры прямо в браузере и хостить их.

Сгенерировал парочку простеньких HTML-игр с интерфейсом, работает годно.

😶 По сути это Сursor в браузере.

🟡Попробовать: https://huggingface.co/spaces/enzostvs/deepsite

@ai_machinelearning_big_data


#deepseek #vibecoding #app
Реакций нет
30 444
28.03.2025 в 18:39
🌟 Atropos: тренажерный зал для RL языковых моделей.

Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.

Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.

Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.

Практическая польза протестирована в экспериментах:

🟢В задачах параллельного вызова функций точность тестовой модели DeepHermes Tool Calling Specialist выросла в 4,6 раза — с 10% до 46%.

🟢В прогнозировании финансовых показателей на модели DeepHermes Financial Fundamentals Prediction Specialist, RL через Atropos удвоил точность (с 20% до 50%).

Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.

Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.

Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.

В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.

Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.


📌Лицензирование: MIT License.


🟡Статья
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Реакций нет
30 274
04.05.2025 в 09:12